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Thermoelastic analysis of 
hybrid fabric composites 

T A K A S H I  ISHIKAWA* ,TSU-WEI  CHOU 
Department of Mechanical and Aerospace Engineering, University of Delaware, Newark, 
Delaware 19711, USA 

This paper examines the thermoelastic behaviour of hybrid fabric composites. The 
analysis is based upon modifications of the "fibre undulation model" and "bridging 
model" originally developed by the authors for non-hybrid fabric composites. Predic- 
tions of elastic stiffness constants as well as in-plane thermal expansion and thermal 
bending coefficients of hybrids have been made. Numerical results compare very 
favourably with the limited experimental data available. 

1. Introduction 
The mechanical behaviour of fabric-reinforced 
composite materials has received the increasing 
attention of researchers recently [1-5] .  The 
thermoelastic properties of non-hybrid fabric 
composites has been studied by Ishikawa [6] and 
lshikawa and Chou [7-9]  in a series of papers. 
In the case of hybrid fabric composites, Ishikawa 
and Chou [10] presented a theoretical prediction 
of the upper and lower bounds of elastic constants 
based upon a "mosaic model", originally developed 
by Ishikawa [6]. A considerable effort was also 
made [10] to identify and categorize the various 
combinations of fibre materials and geometrical 
patterns in hybrid fabrics. Although [10] provides 
a convenient means of estimation of the elastic pro- 
perties of hybrids, the upper and )ower bound 
predictions are rather far apart. 

The purpose of the present paper is to provide 
an improved analysis of the thermoelastic pro- 
perties of hybrid fabric composites. The basic 
analytical tools are the "fibre undulation model" 
and "bridging model" developed by the authors 
[7, 8]. Both models have been modified here to 
fit the situation of hybrid fabric structures. 
Numerical results of the analysis have been com- 
pared with the experimental work of Zweben and 
Norman I l l .  

The identification and categorization of fabric 
structures are made based upon the geometrical 

as well as material repeating pattern in the warp 
and fill directions. Two geometrical quantities 
are necessary: a fill thread is interlaced with every 
nweth warp thread, and a warp thread is inter- 
laced with every nf~th fill thread. Here, the sub- 
scripts f and w denote the fill and warp threads, 
respectively; g signifies a geometrical parameter. 
This paper is restricted to the case of n g =  nfg = 
nwg. Consider the case that the fabric is composed 
of two kinds of fibre materials denoted by ~ and 
/3. Two material parameters are defined: the 
pattern of arrangement of fibre types in the filling 
direction repeats for every n ~  warp thread, and 
the pattern of fibre types in the warp direction 
repeats for every nwm filling thread. The sub- 
script rn indicates a material parameter. Fig. 1 
demonstrates a hybrid fabric with homogeneous 
interlacing for n e = 8, nfr n = 4 and nwm = 4. It 
is also noted that for a given nfm value the number 
of c~ and /3 threads are denoted by n~ m and n ~ ,  
respectively. Similarly, nwm~ and n~m denote the 
number of c~ and/3 threads for a given nwm value. 

Throughout this paper, we specify ne = 8 and 
the fibre material repeating parameters (n~ 
nfm, nwm,C~ n~m) are of the three types: (3, 1; 
3, 1), (1, 1; 1, 1) and (1, 3; 1, 3). Also homo- 
geneous interlacing [10] is assumed in the analysis. 
These conditions are chosen to coincide with the 
systems of Zweben and Norman [1] and the 
authors [10]. Furthermore, the systems of 
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Figure 1 A hybr id  fabric wi th  h o m g e n e o u s  interlacing, 
for  rig = 8, nil, n = nwr  n = 4, r and /3 indicate two types  
o f  thread materials.  ABCD and EFGD deno te  two  choices 

of repeat ing units.  

(3, 1; 3, 1) and (1, 3; 1, 3) are interchangeable 
by interchanging the a and/3 materials. Therefore, 
only the systems o f ( 3 ,  1; 3, 1) and (1, 1; 1, 1) 
will be considered here. 

2. Fundamentals of analysis 
The first theoretical basis of the present work 
is the classical laminated plate theory [11, 12]. 
The constitutive equations including thermal 
terms for a cross-ply laminate are 

N i = A~?e ~ + Bi~ntr -- AT~i~n 
(la) 

M i : Bf?e ~ + D~nnj -- AT~!n 

where 
h i 2  

(Ai~,g~i  n) = f (1 ,z)q}k)dz  ( lb)  
- h / 2  

and 

q(k) = n e ) ~ k )  ( lc)  
i ~ / J  .i . 

Here, the definitions of force resultant, Ni, 
moment resultant, Mi, extensional stiffness, Au, 
coupling stiffness, Bij, bending stiffness, D//, 
plate mid-plane strain, e ~ and curvature, Kj, and 
reduced stiffness, Qi/, have been given by Jones 
[11]. Also, &T is a small uniform temperature 
change, and c 9 denotes a thermal expansion 
coefficient. The integration of Equation lb 
is carried out through the plate thickness, h, 
and k stands for one of the ~ and r? fibre materials 
or the matrix. Equation la can be inverted to 
give 

e~ = a~nNJ + b~nMJ + ATa*~n (2a) 

g i = D ~ I N j  + d.*.~nM. + 2xTg7 *~ tJ ,t 

where 

= , , 7 %  + 
'J J (2b) 

= + < 7 %  

*~ bi~ .~n and d~ ~n in Equation 2a are the Here a O n, 
compliance constants; ~*~n and b*~n denote 
respectively, the in-plane thermal expansion 
coefficient and thermal bending coefficient. 

The second theoretical basis of the present 
analysis is the one-dimensional physical model 
known as the "fibre undulation model" [7, 8], 
which takes into account fibre continuity. The 
original approach of our work [7, 8] has been 
modified slightly here to allow the variation in 
thread width between the two kinds of fibre 
material in the hybrid fabric. Sectional shapes of 
some typical interlacing regions are shown in 
Figs. 2a and b. Here, the thread width ratio, r, is 
defined by 

r = (3)  

where aa and a~ denote the width of the a and 13 
threads, respectively. Since a~ is used as a basis 
of measurement for thread, the notation a = a~ 
will be used from here on. Also, in Fig. 2, a~ 
denotes the length of undulation of a fill thread 
when it is interlaced with an a warp thread. 
Points ao and a~ are the ends of the undulated 
portion of the threads along the fill direction. 

The sinusoidal type of functions used previously 
[7] for describing the undulation shapes are 
preserved here. For the case where the warp 
thread is composed of a material (Fig. 2a), the 
height of the fill thread is given by 

h~(x) = 1 + sin au- (a~ 

(4)  

When the warp thread is composed of/3 material, 
the height of the fill thread is given by 

hfCx) = 1 +sin x - - - -  rau l) 4 

(rao %x  <~ral) (5) 

where h t denotes the total thickness of threads 
(see Fig. 2). 

Corresponding to the cases of Equations 4 
and 5, the heights of the warp threads are given, 
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respectively, by 
{ ht/2 (0 <~ x <~ao) 

h~(x) = 1 --  sin [ (x  - - a l ~ - ] l  ht 
[• 2]a,,J) 4 

(ao <~x <~a,) (6) 

ht/2 (O ~ x <~ rao) 
h~(x) = { (1--sin [(x--r---at--~-~ ]t h-~t 

[ ( I t  2 ]rau] J 4 

(rao <.x <~ra~). (7) 

It should be noted tha t  Equations 4 to 7 are 
wri t ten for the portion of  the undulated region 
where the fill thread is beneath the warp thread. 

A key assumption made in the fibre undulation 
mode/ [7, 8] is that the classical laminated plate 
theory is applicable to each infinitesimal slice of  
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material of  width dx. Then the local plate exten- 
sional stiffness coefficients for the port ion where 
the warp thread is composed of  a material, are 
given by 

(h --2 h~+hC;(x)--h~(x)) 
(s) 

+ Q~(x) -~+ w~ hC~ 
1 

Qij ( 2 (x) - h~(x)) 

where the superscripts F, W, and M denote the fill 
thread region, warp thread region, and pure 
matrix material, respectively, ~ stands for a or fl 
material, and h denotes the total laminate thick- 
ness, including the pure matrix layers. Further- 
more,  the first superscript of  Aij indicates the fill 
material and the second one the warp material. 
This convention is followed for all the stiffness 
and compliance constants throughout this paper. 



Likewise, for the portion of the laminate in 
Fig. 2b where the warp thread is composed of 
/3 material, 

( h-!+h~l(x)-h~(x))2 A.._) = O~ h- -  
(9) 

ht + Qg~(x) -f + QWe(h~(x) - h~(x)), 

Similarly, expressions for B~C~(x), B~(x), D}C~(x) 
and D!fl(x) can also be obtained. 

The local thermal deformation coefficients 
can be obtained by replacing Qi~ in Equation 9 
by qi (Equation lc). For instance, 

A!C~(x) = q~ (h -- h-zt + h~(x) -- h~(x)) 
2 (10) 
ht + q~(x) --~ + qlW~(h~(x) -- hC{(x)). 

should be noted that 5~ Urn and ff~u~n do not 
vanish when the integrations in Equations 11 
and 12 are carried out over the entire length 
of a/2 [(1 + r)] (Fig. 2), unlike the cases of [7, 9] 
for non-hybrid fabrics. This fact is caused by the 
differences in thread widths and properties of the 
constituent fibres of the fabric. Finally, the 
averaged stiffness constants ~ n ,  ~i.~v~n and 
/ ~ n  can be obtained by inverting these averaged 
compliance_constants~Then the averaged thermal 
constants ~/v~n and/~/v~n are obtained from the 
inverted form of Equation 2b. It should be noted 
that the thermoelastic constants derived in this 
paper are based upon the definition of h~(x) and 
h~(x) given in Equations 4 and 5 : the fill thread is 
situated beneath the warp thread. Thus the 
coupling stiffness constants for the right hand 
portions of Figs. 2a and 2b, for instance, are 
denoted by - B ~  and - / ~ ,  respectively. 

Explicit expressions of off-axis properties in the fill 
thread region, Q~(x) and q~(x) are given else- 
where [7-9]. Local compliance constants a~a(x), 
b~.~C~(x) and di~C~(x) are obtained by inverting 
AS~(x), B~a(x) and D~i~(x). Similarly, a~.~(x), 
b ~ ( x )  and d*~(x) are obtained from Aff(x), 
B~(x) and D~(x). Finally, the thermal coef- 
ficients ~*~a, ~,~c~, ~'*~t~ and b*~ can be obtained 
from Equation 2b. 

Consider again the one-dimensional idealized 
model of a hybrid laminate. The average exten- 
sional compliance for the portion containing a 
warp threads is defined as 

a/2 

= :- i a y e ( x ) a x  
a J 0 (11) 

= 1 -- a;.~c~ + _2 a~.~(x) dx. 

For the case of/3 warp threads, 

+L 
ra j dx 

rao (12) 

The superscript U in Equations 11 and 12 signifies 
the fibre undulation model. Other averaged 
compliance constants ~*.u~u , ~-.~.v~, d~v~ and 
clu v ~  can be obtained in a similar manner. 
Expressions of the averaged in-plane thermal 
expansion coefficients can be obtained from 
Equations 11 and 12 by replacing aij by the 
appropriate a*. Also, the thermal bending 
coefficients can be easily obtained. However, it 

3. Bridging model  analysis - (3 ,1 ;3 ,1 )  
ca se 

3.1. Repeating region ABCD of Fig. 1 
The case of fabrics with ng 8, (n~m, n~f~n; 
n~m ) = (3 ,1;3 ,1 ) and homogeneous interlacing 
pattern is considered first. A possible shape of the 
minimum repeating unit is indicated in Fig. 1 
as the area ABCD. The three-dimensional view of 
this repeating unit showing the interlaced con- 
figurations of the a and 13 threads is given in 
Fig. 3, which consists of five regions, R1, R2, 
R3, R 4 and Rs, arranged in series along the 
loading direction. However, other choices of 
the division of regions are possible. It is assumed 
in the following analysis that the resultant force 
in the loading direction of every region is identical. 

To exemplify the analysis of the bridging 
model, region R2 is considered. R?gion 2 consists 
of four sub-regions labelled R 1 Jo2 R~ and R{ 24  1 x 2  

(see Fig. 4). The averaged strains of the sub-regions 
are also assumed to be identical. The averaged 
compliance constants of regions R~ and R~ are the 
same and are given by 

1 -* _ ~3p*.yc~ Pij(R1) 3 +r" ~' +rp~j~e) (13) 

where p stands for a, b or d, and the constants 
a~ ~n, b~ ~n and di~ ~n are defined in Equations 
2a and 2b. The region R~ also has straight threads 
and 

1 (3p; p~ + rp~#~). (14) - - *  4 __  

Pij(R2) 3 + r 

2263 



1~ 2(5+r)e =] 

/ 13+,-I,~ I R, JR= ?r ~ l  R = I R 4  I R~ / I 
" d ( g ( (I 2 

N,,MI a / /  . /  . / --"/' / /V./~/'7 / - /  / " /  /27 4= / / / /  . /  - ,, ,- R~ ,, ,, ,,," ,..// 

~ ~ o . I  o o 

Figure 3 A bridging model for ng= 8 and the (3,1;3,1) case (region ABCD of Fig. 1). 

From the undulated portion R~, the following 
relation is only valid for the constants a and d: 

1 
Pij-*U(R2)3 = _ _ 3  + r (3P--/~'Ilc~ + rPi~'u~t~) (15) 

where the process by which ~ t r  is obtained has 
been given in Section 2. In the case of coupling 
constants 

- * u  3 1 ( ~ * v ~ a - - r h * U ~  (16) bij (R2) = 3 +--~" ij ~ij ,. 

The reason for the minus sign in Equation 16 has 
been explained at the end of Section 2. 

The averaged stiffness constants of each sub- 
region are obtained by inverting the corresponding 
compliance constants of Equations 13 to 16. 
Based upon the assumption of iso-strain condition 

[, :"." .'.', ' , l - '~  

�9 �9 ," , . ,  - .  ,% 

~ ' /  / ~  

Figure 4 Detail view of region R~ in Fig. 3. 

/ 

in each region, the averaged stiffness of an entire 
region can be determined. For example, the 
averaged extensional stiffness of region R2 is 
given by 

1 ] - r n ~  
~iA~2 ) 3 + r  

_ - - ( 2 A i j ( R  1) + ./iiO(R~) + rAij(R4). 

(17) 

Similar expressions can be written for B~(R2) 
and LJij(R2). By inverting .40(R2), Bij(R2) and 
D--/j(R2), expressions of a-*j(R2), b~.(R2) and 
~/o-(R2 ) can be obtained. 

For the fabric composite of Fig. 3, it is assumed 
that each region, R1, R= ; R3, R4 or Rs carries the 
same load N1. Thus the compliance constants of 
the entire composite can be regarded as the 
volume average of the compliances of the 
individual regions: 

_, 3 + r_ ,  (1 +r)_ ,  R 
10*j HS =- [3pij(R1) + ~- -p i j (R2)  + - - ~ P i j ( 3 )  

+ (1 + r)p-~(Rs)]/(6 + 2r) (18) 

where, the superscript HS indicates hybrid satin 
composites, and pi-*j(R1) = Pi.i(R4).-* The inversion 
of ~HS constants gives the stiffness coefficients 

-Hs -~s z3~. s. of the entire composite, Aij  , B~i and 
The basic idea of analysis presented above is 
identical to that of the "bridging model" first 
proposed in [8], in which only non-hybrid fabric 
composites were considered. 

The derivation of the thermal coefficients of 
the composite model shown in Fig. 3 is briefly 
outlined below. In region R2, the local thermal 
coefficients for the sub-regions R 1 and R~ can be 

2 2 6 4  



obtained by replacing Pij of Equations 13 and 
14 by ~* where ~* stands for thermal expansion Pi Pi 
coefficient, ai ,  or thermal bending coefficient, 

-* l f f  b*. For sub-regions R23, a u in Equation 15 is 
- -*  U replaced by ~*o and b U in Equation 16 is 

replaced by E*~ As to the region R~, the averaged 
1 ~ 2 - -  3 ~ 4 thermal constants A ~(R~), A i(R2), ~i(R2), A i(R2) 

and/~(R2~).. . /~I(R 4) can be obtained by inverting 
Equation 2b. Then, by following the bridging 
model approach for thermal constants [9] and 
by adopting the iso-strain assumption for region 
R2, we obtain 

/Yis ( Rz )/)i;( R2)] [ Ks" (R~)I 

= , + r i  =- 4 ) / / (  3 + r)  
[ [B;(R~)J [E;(R=) {&(R=)JJI 

= AT{/~i(R2) j (19) 

where Au(R=), B#(R2 ) and/)~(R= ) are given by 
Equation 17. Then 

{{*(R~)) [ b3.;(R~)3,~(R=)Jtg(R~)) 
(20) 

Finally, expressions of thermal coefficients of the 
entire hybrid satin composite can be obtained by 
replacing Pi~ in Equation 18 by p i where p now 
stands for a or b. 

3.2. Repeating region EFGD of Fig. 1 
It has been shown [10] that both regions ABCD 
and EFGD of Fig. 1 can be treated as a repeating 
region for the entire fabric composite. The deri- 
vation of the thermoelastic constants for the 
repeating region EFGD is outlined below and 
comparisons of results with those obtained for 
region ABCD will be given later. 

Fig. 5 depicts the three-dimensional view of 
region EFGD, which is composed of regions R], 
R2 and Re. Region R1 is further divided into 
eight sub-regions, RI, R~ . . . .  , R]. The com- 
pliance constants of each sub-region are again 
obtained following the derivation of Equations 
13 to 16. Then, the averaged stiffness constants 
of region R1 are given by 
P~j(R~) = [2P~j(R]) + ~/~(R~) + rPu(R{)]/(3 + r) 

(21) 

Rs ~ (3+,-la 

" ~  R7 / / //,' 

�9 , 

, 

c~ Ri / / / , ,  
/ / / /  

/ /  / /  / / / "  

R: 

Figure5 Another bridging model for ng = 8 and the 
(3,1;3,1) case (region EFGD of Fig. 1). 

where 

~j(R~) = Pii(R~) = Pij(RSl) = fi0{R~). 

Finally, for the entire hybrid satin composites, 
the compliance constants are given in the general 
form 

~*HS --* = + r) pij (R3)1/(3 + Pij [2p~/(Ra) + (1 -* r) 

(22) 

where the relation pij(R1) =po(R2)  has been 
applied. A procedure parallel to the above can 
be used to derive the thermal coefficients. 

As to the case of (1,3;1,3) material combi- 
nation, the thermoelastic constants can be derived 
from the above by simply exchanging the c~ and 
/~ materials. 

4. Bridging model  analysis - (1 ,1;1 ,1)  
case 

This section examines another case of fabric 
of ng = 8 with homogeneous interlacing and the 
material repeating parameters of (1,1;1,1). A 
repeating pattern of the fabric composite is 
shown in Fig. 6. There are four sub-regions, 
RI, . �9 �9 , R~, in region R1. It can be shown that 

- *  2 -*  4 (p*~C~ + r p ; ~ ) / ( 1  + r )  (23) P//(R1) = Pii(R1)  = ii 

- - *  3 p ij(R,) = ( p ~  + rp~C~3)/(1 + r) (24) 

where p stands for a, b or d. For sub-region R], 

/ 

,~,j + Gi;. ~%/(1 
(25) 
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Figure 6 A bridging model for ng 
and the (1,1;1,1) case. 

=8  

Here, p stands for a or d. The stiffness constants 
for region R1 are given by 

= [Pi] (R1) 

+ 2rP/j(R])]/(2 + 2r). (26) 

Finally, the compliance constants for the entire 
fabric composite model are 

ij 4(1-+ r) (1 + r)Fi~.(R,) 

1 
+ 7(1 + 

_* _* } 
+ (1 + r)[pij(R4) + pij(Rs)] . 

'(27) 
Just as in the case of  (3,1;3,1), another repeat- 

ing unit can be identified for the material repeat- 
ing parameters of  (1,1;1,1). The cases of(3,1 ;3,1), 
(1,3;1,3) and (1,1;1,1) give all the possible fibre 
material combinations for homogeneous inter- 
lacing in hybrid fabrics with the present fabric 
parameters. 

5. Numerical results and discussions 
Numerical work has been performed to examine 
the thermoelastic properties of  a graphite/Kevlar/ 
epoxy hybrid fabric composite. Basic material 
properties of  unidirectional laminae of  graphite/ 
epoxy and Kevlar/epoxy are given in Table I. 
Most of  the values in Table I are estimated from 
[ 1 3 - 1 5 ] ,  based upon the fibre and matrix pro- 
perties. Because of  the lack of  experimental data, 

there is uncertainty in the value of  c~ T for Kevlar. 
For all the numerical examples the fibre volume 
fraction of  the unidirectional lamina is assumed 
to be 65 %, which is slightly higher than the total 
fibre volume fraction of  the fabric composite due 
to the presence of  pure matrix layers (Fig. 2a). 

Fig. 7 shows the predictions of  the extensional 
stiffness of  the present approach as well as those 
from the bound approach of  [10] for a graphite/ 
Kevlar/epoxy system of  ng = 8. Three cases of 
material repeating parameter are presented and the 
theoretical curves are obtained by changing r 
continuously. Because values of  r far from unity 
are impractical, cuvres in Fig. 7 are truncated. 
The present predictions based upon the bridging 
concept fall in between the upper and lower 
bounds of  [10] and compare very favourably 
with experiments. 

Since the present work modifies the original 
bridging model for non-hybrid composite of  
[8], it is worthwhile to compare the predictions 
of  these two slightly different approaches by 
letting the ~ and /7 material be identical in the 
present analysis. The results, shown in Table II, 
indicate that the discrepancies in predictions 
between the non-axial constants ( A u ,  Baz and 
DI=) are greater than those for the axial constants 
( A n ,  B n  and D n ) .  Table III shows that the 
predictability of  the present model is rather 
insensitive to the selection of repeating unit 
for a given fabric. 

Results of  thermal coefficient predictions 
for the same hybrid system as in Fig. 7 are pre- 

T A B L E I Thermoleastic properties of the unidirectional laminae, Vf = 65% 

Material EL(GPa) ET(GPa) VL GLT(GPa) c~ L (X 10 -7 o C_~) c~ T (X 10 -5 ~ 

Graphite/ 
epoxy 
[10, 13, 141 
Kevlar/ 
epoxy 
[lO, lsl 
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132 9.31 0.28 

85.3 5.50 0.40 

4.61 --2.5 2.7 

2.54 -- 11.0 3.2 
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Figure 7~ttt/h against relative fibre volume fraction of 
graphite/Kevlar/epoxy composites with ng= 8 . - - - - :  
bound theory, : bridging model, �9 and A: exper- 
imental data for fabric and cross-ply laminate composites, 
respectively. (h = ht, h/a = 0.4.) 

sented in Fig. 8 for the present  analysis based 

upon  the  bridging mode l .  Also shown in Fig. 8 are 

predict ions based upon  the  mosaic mode l  and [6]. 

No exper imenta l  data are available for compar ison 

wi th  the theory .  

6. Conclus ions  
1. The one-dimensional  fibre undula t ion  con- 

TABLE I1 Comparison of elastic stiffness values of non- 
hybrid fabric composites (ng = 8) obtained by the present 
approach and by the method of [8] (h = h t = 4.0m -4, 
a = a u = l . 0 m  -3) 

Present method Method of 
[81 

A~I (MPam-l) 23.21 23.37 
A~2 1.009 1.012 

Ht~ (kN) 1.754 1.796 
/~12 -- 1.405 Xl0 -3 -- 3.456X10 -4 

/)1 t (Nm) 0.2945 0.2973 
/~2 1.294 X 10 -= 1.284X 10 -2 

T A B L E  I l i  Comparisons of elastic stiffness values 
obtained from two different repeating units for the 
(3,1;3,1) case (h = h t = 4.0 m -4, a = au = 1.0m -3) 

Relative Vf of c~ material (%) 89.9 75 60.3 
(r) (0.3333) (1.0) (2.0) 

Ax~ for repeating unit 2.240 2.113 1.924 
of Fig. 3 (X 10MPam -1) 

AI~ for repeating unit 2.207 2.093 1.941 
of Fig. 5 (X 10MPam -1) 
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Figure 8 Thermal coefficients against relative fibre volume 
fraction of graphite/Kevlar/epoxy composites with ng = 
8 . - - - :  mosaic model [ 6 ] , - - :  bridging model. 

cept  developed previously has been mod i f i ed  to 

treat  the interlacing of  two different  types of  

fibres, and it has been incorpora ted  into a general 

"br idging m o d e l "  for predict ing thermoelas t ic  

propert ies  o f  hybr id  fabric composi tes .  

2. The predict ions  o f  elastic stiffness constants  

compare  very favourably wi th  exper imenta l  results 

o f  g raph i te /Kevla r /epoxy  systems. 

3 .Theo re t i c a l  analyses o f  in-plane thermal  

expansion and thermal  bending coeff ic ients  o f  

hybr id  fabric composi tes  have also been made.  

4 . T h e  predic ted  values o f  the axial elastic 

stiffness constants  are insensitive to the choice  

o f  some possible repeat ing uni t  for the fabric 

material .  

Acknowledgement 
This work  was suppor ted  by the US A r m y  Research 

Office.  

References 
1. C. ZWEBEN and J. C. NORMAN, SAMPE Q. July 

(1976) 1. 
2. c. ZWEBEN, "Advance Composites: A 

Revolution for the Designer", American Institute of 
Aeronautics and Astronautics 50th Annual Meeting 
"Learn from the Masters" Series, May 1981. 

3. I. KIMPARA, A. HAMAMOTO and M. TAKEHANA, 
Trans. JSCM, 3 (1977) 21. 

4. J. KAVELKA, "Thermal Expansion of Composites 
with Canvas-Type Reinforcement and Polymer 
Matrix", International Conference of Composite 
Materials 3, Paris, August 1980, p. 770. 

5. T. HIRAI and T. SENBA, "On the Mechanical 
Behavior of Fabric-Strengthened Composites Con- 
sidering Three-Dimensional Cross-Linked Structure", 
International Conference of Composite Materials, 

2 2 6 7  



3, Paris, August 1980 p. 357. 
6. T. ISHIKAWA, Fibre ScL TechnoL 15 (1981) 127. 
7. T. ISHIKAWA and T.W. CHOU, submitted for 

publication. 
8. Idem, J. Mater. ScL 17 (1982) 3211. 
9. Mere, submitted for publication. 

10. Idem, J. Compos. Mater. 16 (1982) 2. 
11. R.M. JONES, "Mechanics of Composite Materials" 

(Scripta, Washington, DC, 1975). 
12. J.M. WHITNEY and A. W. LEISSA, J. Appl. Mech. 

36 (1969) 261. 
13. T. ISHIKAWA, K. KOYAMA and S. KOBAYASHI, 

J. Compos. Mater. 11 (1977) 332. 
14. Idem, ibid. 12 (1978) 153, 
15. M. GRUBER and T.W. CHOU, submitted for 

publication. 

Received 18 August  

and accepted 2 September 1982 

2268 


